Coherence scanning interferometry: linear theory of surface measurement.

نویسندگان

  • Jeremy Coupland
  • Rahul Mandal
  • Kanik Palodhi
  • Richard Leach
چکیده

The characterization of imaging methods as three-dimensional (3D) linear filtering operations provides a useful way to compare the 3D performance of optical surface topography measuring instruments, such as coherence scanning interferometry, confocal and structured light microscopy. In this way, the imaging system is defined in terms of the point spread function in the space domain or equivalently by the transfer function in the spatial frequency domain. The derivation of these characteristics usually involves making the Born approximation, which is strictly only applicable to weakly scattering objects; however, for the case of surface scattering, the system is linear if multiple scattering is assumed to be negligible and the Kirchhoff approximation is assumed. A difference between the filter characteristics derived in each case is found. However this paper discusses these differences and explains the equivalence of the two approaches when applied to a weakly scattering object.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Su, Rong and Wang, Yuhang and Coupland, Jeremy and Leach, Richard K. (2017) On tilt and curvature dependent errors and the calibration of coherence

Although coherence scanning interferometry (CSI) is capable of measuring surface topography with sub-nanometre precision, it is well known that the performance of measuring instruments depends strongly on the local tilt and curvature of the sample surface. Based on 3D linear systems theory, however, a recent analysis of fringe generation in CSI provides a method to characterize the performance ...

متن کامل

Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications

In recent years many new methods of 3D optical imaging have been introduced that are applicable to the study of microand nano-scale flows. Coherent microscopy and optical coherence tomography join more established methods such as coherence scanning interferometry and confocal microscopy. These methods are very closely related and, using linear systems theory, can be compared in terms of their p...

متن کامل

Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures.

Fast, precise 3-D measurement of discontinuous step-structures fabricated on microelectronic products is essential for quality assurance of semiconductor chips, flat panel displays, and photovoltaic cells. Optical surface profilers of low-coherence interferometry have long been used for the purpose, but the vertical scanning range and speed are limited by the micro-actuators available today. Be...

متن کامل

Computerized interferometric surface measurements [Invited].

The addition of electronics, computers, and software to interferometry has enabled enormous improvements in optical metrology. This paper discusses four areas in which computerized interferometric measurement improvements have been made in the measurement of surface shape and surface roughness: (a) The use of computer-generated holograms for the testing of aspheric optics, (b) phase-shifting in...

متن کامل

Offset of coherent envelope position due to phase change on reflection.

Different materials with different phase changes on reflection affect the surface-height measurement when interferometric techniques are employed for testing objects constructed of different materials that are adjacent to one another. We test the influence of this phase change on reflection when vertical scanning interferometry with a broadband source is used. We show theoretically and experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 52 16  شماره 

صفحات  -

تاریخ انتشار 2013